The LARA Compiler Suite*

Joo Bispd Pedro Pinth Ricardo Nobr&?, Tiago Carvalht? Jodo M. P. Cardo56

'Departamento de Engenharia Informatica
Faculdade de Engenharia (FEUP), Universidade diwF@ortugal
’INESC-TEC, Porto Portugal
{jbispo, pmsp, ricardo.nobre, tiago.diogo.carvalimpc}@fe.up.pt

Keywords—MATLAB, Source-to-Source Compilers, Aspect ReflectC [6, 7] is a C compiler based on CoSy’s piben
Oriented Programming, LARA, Embedded Systems framework [8]. CoSy's configurability and retardetity make
ReflectC particularly effective for exploration afompiler
transformations and optimizations on possible &echire
variations, and it is being used for hardware/safenco-design
and design space exploration (DSE). Figure 1(c)ctieghe
compilation flow of ReflectC, and its various targe
architectures.

We will present demos of the tools and the use ARRA
aspects and strategies to guide our suite of cauigil tools

LARA [1] is an aspect-oriented programming (AOP)
language which allows the description of sophistidacode
instrumentation schemes, advanced mapping strategie
including conditional decisions, based on hardveafedare
resources, and of sophisticated sequences of oempil
transformations. Furthermore, LARA provides mechkans for
controlling all elements of a toolchain in a cotei and
systematic way, using a unified programming integfaWe

: providing:
tr)(ergl?sgrogt]r;rel\j Agl_cl)énspllzlelrwlfl\cl)llzs_rgﬁ\éeggﬂegctground ARA. 1) c code_genera;ion from MATLAB code, according to
MATISSE [2, 3] is a compiler which 1) allows anadgs information prowded by LARA aspects; .
and transformations on MATLAB code and 2) generdies 2) Instrumentation of C che to be L.’sed for co!lectlng
code from the MATLAB code. MATISSE can be fully specific compile and runtime information (e.g., @x#n

time, range of values for specific variables, costo
profiling);

3) User-controlled compiler optimizations targetingvesal
architectures and DSE of sequences of compiler
optimizations bearing in mind performance improvatae
In addition to presenting examples for each ofttuds of

the LARA compilation suite, we show an execution tioé

controlled through LARA aspects, which can defihe type
and shape of MATLAB \Vvariables, specify code
insertion/removal actions, and define specializatiirectives
and other additional information. MATISSE can outpu
transformed MATLAB code and specialized C code. The
knowledge provided by the LARA aspects allows MASESto
generate C tailored to specific targets (e.g., stically . .
declared arrays to be compliant with the high-lesgithesis gomplete toolchain, controlied by LARA aspects (Ségure
tools such a€atapult C). The MATISSE compilation flow can )-

be seen in Figure 1(a). C Code

MATLAB LARA Compiler Suite ~
Code
VHDL
LARA Code MATISSE MANET ReflectC .

DSE Results
ReflectC MicroBlaze [t Resls

Figure2. LARA Compiler Suite.

(aspects)

MATISSE C Code
LARA Code
(aspects)
(c)
MANET ﬂLCC/"de

REFERENCES
Figure 1. LARA-Guide Tools it s o o soncs e

MANET [4] is a source-to-source com_piler for ANSI C Kgéb"fz,“&irfﬂfj 28(1)?' on Aspect-oriented Softwadevelopment,
based on Cetus [5], and is controlled using LARAe&ss. [2] J. Bispo, P. Pinto, R. Nobre, et al, "The MATISSEATLAB
MANET manages to leverage the expressiveness and compiler,” in 11th IEEE Int. Conf. on Industrialfimmatics (INDIN),
modularity of LARA to query and manipulate the GeAST, 2013, pp. 602-608.
providing an easy compilation flow with main godl epde [38] MATISSE, http://specs.fe.up.pt/tools/matisse/
instrumentation and code transformations. This flasv [4] MANET, http://specs.fe.up.pt/tools/manet/
depicted in Figure 1(b). LARA aspects allow for iengle [5] C. Dave, H. Bae, S.-J. Min, et al., "Cetus: A sedi@source compiler
selection of program elements in the code which ban infrastructure for multicores,” Computer, 42(12), #6-42, 2009.
analyzed or transformed, by either consulting ththibutes or [6] J.M. Cardoso, T. Carvalho, J.G. Coutinho, et aCortrolling a
applying actions. Thus, MANET can be used to previd Complete Hardware Synthesis Toolchain with LARA ésis,"
information reports based on compiler analysesmulement Microprocessors and Microsystems, 2013.
sophisticated code instrumentation strategies,oopérform [7] ReflectC, http://specs.fe.up.pt/tools/reflectc/
code optimizations and transformations. [8] ACE CoSy® Compiler Development System,

http://www.ace.nl/compiler/cosy.html

*This work has been partially supported by FCT (Rguese Science Foundation) under research graiEIA-CCO/116796/2010, SFRH/BD/82606/2011,
SFRH/BD/90507/2012, and FEDER/ON2 and FCT proje@RVE-07-124-FEDER-000062. Previous support wasigeavby the European Community’'s Framework
Programme 7 (FP7) under contract No. 248976 (REHALR®ject).



