An Automated Design Flow to Prototype
Simulink Models on MPSoC

Francesco Robino, Johnny Oberg
Department of Electronic Systems
Royal Institute of Technology (KTH), Sweden
Email: {frobino,johnnyob}@kth.se

Abstract—Simulink is a modeling environment suitable to
model embedded systems at system-level. However, there is no
standard to prototype Simulink models onto modern multi-
processor system-on-chip (MPSoC). In this demonstration we
show how our NoC System Generator tool can be used as part of
an automated platform-based design flow to synthesize a Simulink
model onto a network-on-chip based MPSoC implementation on
FPGA. The performance of the generated prototype scales with
the number of processors.

I. INTRODUCTION

Simulink [1] is an industrial de-facto standard for building ex-
ecutable models of embedded systems and their environments,
facilitating validation by simulation. In Simulink, systems are
graphically described through the use of blocks (e.g. an adder, a
transfer function, etc.) and subsystems (a set of blocks), linked
by signals. Architecture and application specification can be
combined in a mixed HW/SW model, enabling Simulink to be
classified as system-level design (SLD) method [4].

However, automating the generation of a working prototype
from a system-level model is not a trivial process. In addition,
there is the need of techniques enabling fast-prototyping of
system-level models onto state of the art multi-processor
systems on chip (MPSoCs) [4].

In this demo, we show an automated design flow to
synthesize a Simulink model onto a network-on-chip (NoC)
based MPSoC implemented on FPGA. The flow is based on
the NoC System Generator (NSG) tool [2], and it implements a
platform-based design methodology, constraining the Simulink
model and MPSoC to share a common semantics domain [3].

II. THE DESIGN FLOW

Fig.1 shows the design flow. The user starts simulating a FIR
low-pass filter using Simulink. The filter is composed by 4
subsystems, each one represented with a different color. The
pink subsystem generates a sinusoidal signal, the blue one adds
to it random noise, the yellow one filters the noise component,
while the green one displays the filtered signal.

The Simulink Embedded Coder [1] automatically generates
C source code for real-time implementation of each subsystem.
Each generated program executes a background task, and it
expects to be periodically interrupted by a timer. During the
interrupt service routine (ISR), a generated function evaluating
the subsystem functionality, rt_OneStep, must be executed.
This represents the Simulink execution semantics.

The flow extracts the C code of each rt_OneStep
function, so that it can be embedded as a pure function on
the code running on each processor of the target MPSoC.
In addition, communication routines to use the underlying
NoC are added in the code. For example, the blue subsystem
(noise generator) needs to receive data from the pink subsystem
(sinusoidal generator) and send its result to the yellow one (fil-
ter). Its rt_OneStep function is consequently updated with
a receive and send routine, enabling the communication
through the NoC.

After this refinement, the C code is provided to the NSG
tool. Together with an XML file, which describes the kind of
MPSoC where we want to prototype the system (e.g. number
and kind of processors), the NSG tool automatically generates

C code: rt_onestep function(s)] System-level
specification

[Extraction of rt_onestep, one for each subsystem |

1]

) |
:I NoC System Generator

(VHDLfiles]

RTL MPSoC
Prototype synthesis on FPGA

specification

... Ccode: clean process function(s)]

Fig. 1. Simulink to MPSoC design flow
HDL files for the NoC and initializes the MPSoC components.
In addition, it spreads and compiles the provided software on
the processors, compiling the C code from each subsystem on
a different processor. Finally the user configures the FPGA
with the generated files to implement a working prototype.
In order to ensure the same results between the Simulink
model and the MPSoC prototype, the NSG tool enforces the
generated platform to exhibit the same execution semantics
of the Simulink simulator. In fact, the software running on
the processors is constrained to execute and communicate
data through the NoC only on periodic events, provided by a
hardware timer in the platform [3]. This reflects the execution
semantics of the code generated by the Embedded Coder
(executing during periodic ISRs) and ensures that the results
provided by the prototype are the same as the simulation. This
technique reflects the concepts of the platform-based design
methodology, constraining MPSoC and high level model to
share a common semantics domain [4].

III. CONCLUSIONS

In this demo, we show an automated design flow to prototype
Simulink models on NoC-based MPSoC through the NSG tool.
The main advantage of the flow is to enable fast prototyping. It
also enables performance improvements. The presented exam-
ple increase the throughput of the system of 2.4x, spreading
the computation through 4 processors instead of running it on
a single processor. With a N processors MPSoC, it is possible
to reach a theoretical NV x throughput increase by balancing
the execution time of the subsystems in the Simulink model.

REFERENCES

[1] Mathworks. Simulink documentation center.
mathworks.se/help/simulink/.

[2] 7. Oberg and F. Robino. A NoC Zystem generator for the sea-of-cores
era. In Proc. of the 8th FPGAWorld Conference, FPGAWorld *11, 2011.

[3] F. Robino and J. Oberg. The HeartBeat model: a platform abstraction
enabling fast prototyping of real-time applications on NoC-based MPSoC
on FPGA. In ReCoSoC, 2013.

[4] A. Sangiovanni-Vincentelli. Quo vadis SLD: Reasoning about trends and
challenges of system-level design. IEEE, 95(3):467-506, 2007.

Website. http://www.

