
ID.Fix: an EDA Tool for Fixed-Point Refinement of
Embedded Systems

O. Sentieys1, D. Menard2, N. Simon1
1University of Rennes I, INRIA. 2INSA Rennes, IETR

olivier.sentieys@inria.fr

I. INTRODUCTION

Most of digital image and signal processing algorithms are imple-
mented into architectures based on fixed-point arithmetic to satisfy
cost and power consumption constraints associated with most of
embedded and cyber-physical systems. The fixed-point conversion
process(or refinement) is crucial for reducing the time-to-market
and design tools to automate this phase and to explore the design
space are still lacking. The ID.Fix EDA tool, based on the compiler
infrastructure GECOS, allows for the conversion of a floating-point C
source code into a C code using fixed-point data types. The data word-
lengths are optimized by minimizing the implementation cost under
accuracy constraint. To achieve low optimization time, an analytical
approach is used to evaluate the fixed-point computation accuracy.
This approach is valid for systems made-up of any (smooth) arith-
metic operations. Commercial tools can then be used to synthesize
the architecture or to perform software compilation from the output
fixed-point description of the application. Thus, the goal is to bridge
the gap between the floating-point description developed by algorithm
designer and the fixed-point description use as input for high-level
synthesis or compilation tools.

II. FLOATING-POINT TO FIXED-POINT AUTOMATIC
CONVERSION IN ID.FIX

The tool inputs and output are described in Figure 1. Input is the C
source code describing the application using floating-point data types.
Some pragmas are used to express specific behavior and to control the
design flow. This tool determines the integer and fractional part word-
length of each data. The tool generates a new C code in which fixed-
point data types, such as Mentor Graphics’ ac_fixed or SystemC
sc_fixed, are used. The implementation cost is minimized under
an accuracy constraint specified by the user. An architecture model is
used to determine the cost of each operator according to the operand
word-length.

The tool has been developed in the GECOS framework [4], which
is a compiler infrastructure leveraging source to source transforma-
tions. The different transformations carried-out in ID.Fix are defined
through a GECOS script. The detailed tool flow is presented in
Figure 1. The user has to define the numerical accuracy constraint
applied to the output. Output quantization noise power is used
as the numerical accuracy constraint. From the C source code, an
intermediate representation is generated with the GECOS front-end.
This intermediate representation, used for fixed-point conversion, is
a Control and Data Flow Graph (CDFG).

A. Fixed-point conversion
In the fixed-point conversion, the dynamic range is first determined

with a technique based on interval arithmetic. Then, the data word-
lengths are optimized by minimizing the implementation cost under
the numerical accuracy. The architecture model is defined in an XML
file. Algorithm used for word-length optimization can be chosen
among several. Thanks to the analytical expression of the accuracy
metric, the optimization time is significantly lower than classical
approaches based on fixed-point simulations.

ID.Fix	

App.fix.cc!

Fi
xe

d-
Po

in
t

Sp
ec

ifi
ca

tio
n

App.c!

Applica'on	
 C	

source	
 code	
 	

CDFG	
 	

genera/on	

CDFG	
 dynamic	
 	

range	
 evalua/on	

Binary-­‐Point	
 	

Determina/on	

Fixed-­‐point	
 C	
 	

code	
 genera/on	
 	

C++	
 Code	
 with	

	
 ac_fixed	
 	

data	
 types	

Cost	
 evalua/on	

Architecture	

model	

Accuracy	
 constraint	
 Pbmax

Co
nt
ro
l	
 D

at
a	

Fl
ow

	
 G
ra
ph

	

Word-­‐length	

Op/miza/on	

Accuracy	
 	

Evalua/on	

	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ID.Fix-­‐AccEval	

SFG	
 	

Genera/on	

Simulator	
 	

genera/on	

GFS	

	
 Simula/on	

ComputePb.c!

Func'on	
 to	
 compute	
 	

output	
 quan'za'on	
 noise	
 power	
 	
 	

Graphe	
 flot	
 de	
 signal	

Dynamic	
 Range	
 	

Evalua/on	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ID.Fix-­‐DynEval	
 Dyn.xml!

Simulator!

App.sfg.xml!

Dynamique	
 GFS	

Fig. 1. Detailed Flow of ID.Fix

Finally, a fixed-point C code is regenerated at the output of the tool.
For each data contributing to the computation of the output, fixed-
point data types are used. This data type defines the total number of
bits, the number of bits for the fractional part, the rounding mode,
and the overflow mode.

B. Accuracy evaluation
The originality of our tool is the use of an analytical approach to

evaluate numerical accuracy. This approach is valid for any system
made-up of smooth operations. The accuracy evaluation module
generates a C code describing the analytical expression of the output
quantization noise power according to the operand word-length. The
intermediate representation used to evaluate the accuracy is a single
Signal Flow Graph representing the application. To determine the
analytical expression of Pey , three transformations are applied to
the SFG. First, the CDFG at the noise level is determined. Second,
linear recurrence equations describing the application are determined.
Finally, the expression of Pey is computed.

REFERENCES

[1] R. Rocher, D. Menard, O. Sentieys, and P? Scalart. Analytical approach
for numerical accuracy estimation of fixed-point systems with smooth
operations. IEEE Transactions on Circuits and Systems I, 59(10):2326 -
2339, 2012.

[2] D. Menard, R. Rocher, and O. Sentieys. Analytical fixed-point accuracy
evaluation in linear time-invariant systems. IEEE Transactions on Circuits
and Systems I, 55(10):3197–3208, 2008.

[3] D. Menard, R. Rocher, O. Sentieys, and O. Serizel. Accuracy Constraint
Determination in Fixed-Point System Design. EURASIP Journal on
Embedded Systems, 2008:Article ID 23197, 13 pages, 2008.

[4] A. Floch et al.. GeCoS: A framework for prototyping custom hardware
design flows. in Proc. 13th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM), pp. 100-105, 2013.

